Research interests

High throughput computer vision for ecology and evolution

[add text]

Selection from visual predation vs. developmental plasticity of isopod pigmentation

Divergent selection and adaptive phenotypic plasticity can jointly influence phenotypic differentiation within and among populations. Understanding how these processes interact is difficult when the same environmental differences that lead to divergent selection can also promote phenotypic plasticity. Previous work has shown that pigmentation of the freshwater isopod Asellus aquaticus varies with background colour. This is hypothesized to be an evolutionary response to visual predation along a gradient of differently coloured macrophyte-backgrounds. In an six month long outdoor mesocosm experiment, we investigated how predator density (0, 30, and 60 threespine stickleback per mesocosm) and macrophytes (presence/absence) affected the abundance and pigmentation of isopods. While we found that fish presence strongly reduced isopod density, particularly in the absence of macrophytes, we found no effect on the size or pigmentation of isopods. Instead, we detected increased pigmentation in the presence of macrophytes, and across all levels of fish density. A subsequent laboratory rearing experiment indicated that pigmentation of isopods may a developmentally plastic trait.

Asellus aquaticus Mesocosms (1000L)

Inspired by the findings of our mesocom experiment, we investigated whether developmental phenotypic plasticity could be responsible divergent patterns of pigmentation. In a laboratory experiment we reared over 1000 individuals from 29 families with two diets of contrasting nutritional quality (low/high protein concentration), and quantified developmental trajectories of body size and pigmentation for every individual for 12 weeks.Overall, dietary protein had strong effects on the developing phenotype, and this influenced the “survival landscape” of juvenile isopods. Specifically, we found that higher dietary protein had strong positive effects on the developmental rate of pigmentation, but led to increased mortality under high growth and pigmentation rates. Building on previous work, suggesting that visual predation has mediated the evolution of A. aquaticus body size and cryptic pigmentation, our study shows how dietary effects on the developmental trajectories of juvenile isopods can have fitness consequences in the absence of predation. In review

Foundation species and the stability of aquatic ecosystems

Ecosystems worldwide are affected by an increasing frequency of external perturbations, like extreme climate events, invasive species, or altered nutrient dynamics. However, we still know surprisingly little about the factors that drive the temporal dynamics of ecosystems and affect resistance and resilience to perturbations. To address this I investigate how key features of aquatic ecosystems (e.g. macrophytes) affect temporal dynamics of ecosystems, and their resistance to press (fish addition) and pulse (nutrient addition) perturbations. I use high resolution sensor technology to meter a variety of parameters in highly replicated experimental mesocosm and pond ecosystems.